
 More Patterns for the Generation, Handling and Management of Errors

 D6-1 Version 2.0

More Patterns for the Generation, Handling and
Management of Errors

Andy Longshaw and Eoin Woods

Abstract
As systems become more complex it is increasingly difficult to anticipate and handle error
conditions in a system. The developers of the system must ensure that errors do not cause
problems for the users of the system. In a previous paper [Longshaw 2004] a collection of
patterns for such distributed error handling was explored. As this collection was refined, two
new patterns emerged: Hide Technical Details from Users and Unique Error Identifier.
This paper retains the same context and but is focused on obtaining feedback specifically on
these new additions.

Introduction
In recent years there has been a wider recognition that there are many different stakeholders
for a software project. Traditionally, most emphasis has been given to the end user
community and their needs and requirements. Somewhere further down the list is the business
sponsor; and trailing well down the list are the people who are tasked with deploying,
managing, maintaining and evolving the system. This is a shame, since unsuccessful
deployment or an unmaintainable system will result in ultimate failure just as certainly as if
the system did not meet the functional requirements of the users.

One of the key requirements for any group required to maintain a system is the ability to
detect errors when they occur and to obtain sufficient information to diagnose and fix the
underlying problems from which those errors spring. If incorrect or inappropriate error
information is generated from a system it becomes difficult to maintain. Too much error
information is just as much of a problem as too little. Although most modern development
environments are well provisioned with mechanisms to indicate and log the occurrence of
errors (such as exceptions and logging APIs), such tools must be used with consistency and
discipline in order to build a maintainable application. Inconsistent error handling can lead to
many problems in a system such as duplicated code, overly-complex algorithms, error logs
that are too large to be useful, the absence of error logs and confusion over the meaning of
errors. The incorrect handling of errors can also spill over to reduce the usability of the system
as unhandled errors presented to the end user can cause confusion and will give the system a
reputation for being faulty or unreliable. All of these problems are manifest in software
systems targeted at a single machine. For distributed systems, these issues are magnified.

In a previous paper [Longshaw 2004], we set out a collection (or possibly a language) of
patterns that relate to the use of error generating, handling and logging mechanisms –
particularly in distributed systems. The patterns in this collection are not about the creation of
an error handling mechanism such as [Harrison] or a set of language specific idioms such as
[Haase] but rather in the application code that makes use of such underlying functionality.
The intention is that these patterns combine to provide a landscape in which sensible and
consistent decisions can be made about when to raise errors, what types of error to raise, how
to approach error handling and when and where to log errors.

 More Patterns for the Generation, Handling and Management of Errors

 D6-2 Version 2.0

This paper extends and refines this original pattern collection by defining two new, related
patterns, namely Unique Error Identifier and Hide Technical Details from Users.

Overview
The patterns presented in this paper form part of a pattern collection aimed at guiding the
designers of error handling in multi-tier distributed information systems. Such systems
present a variety of challenges with respect to error handling, including the distribution of
elements across nodes, the use of different technology platforms in different tiers, a wide
variety of possible error conditions and an end-user community that must be shielded from the
technical details of errors that are not related to their use of the system. In this context, a
software designer must make some key decisions about how errors are generated, handled and
managed in their system. The patterns in this collection are intended to help with these
system-wide decisions. This type of far-reaching design decision needs careful thought and
the intent of the patterns is to assist in making such decisions.

As mentioned above, the patterns presented here are not detailed design solutions for an error
handling framework, but rather, are a set of design principles that a software designer can use
to help to ensure that their error handling approach is coherent and consistent across their
system. This approach to pattern definition means that the principles should be applicable to
a wide variety of information systems, irrespective of their implementation technology. We
are convinced of the applicability of these patterns in their defined domain. You may also find
that they are applicable to systems in other domains - if so then please let us know.

The patterns that comprise the entire collection are illustrated in Figure 1. The boxes in the
diagram each represent a pattern in the collection. The arrows indicate dependencies between
the patterns, with the arrow running from a pattern to another pattern that it is dependent
upon.

The patterns in the grey boxes are the ones covered in this paper. All of the other patterns are
described in thumbnail form in the appendix. The full form of the other patterns is available in
the paper submitted to EuroPLoP 2004 [Longshaw 2004].

 Big Outer

Try Block

Log at Distribution
Boundary

Hide Technical
Detail from Users

Unique Error
Identifier

Split Domain and
Technical Errors

Log Unexpected
Errors

Keep Exceptions
Exceptional

Figure 1 - Error Handling Patterns

 More Patterns for the Generation, Handling and Management of Errors

 D6-3 Version 2.0

The relationships between the patterns are as follows:

• Log Unexpected Errors depends upon Make Exceptions Exceptional so that expected

conditions do not become exceptions and get incorrectly logged.
• Log at Distribution Boundary depends upon Split Domain and Technical Errors so that

the two broad error categories can be handled differently.
• Log at Distribution Boundary depends upon Unique Error Identifier to mitigate the

potential confusion arising from one error causing multiple log entries.
• Hide Technical Details from Users depends upon Log at Distribution Boundary so that

the errors that it receives are suitable to use as a basis for display to the user
• Hide Technical Details from Users also depends (directly or indirectly, according to use)

upon Unique Error Identifier to mitigate the potential confusion arising from one error
causing multiple log entries.

• Big Outer Try Block depends upon Split Domain and Technical Errors so that the two
broad error categories can be handled differently

• Big Outer Try Block depends upon Log at Distribution Boundary so that the errors that it
receives are more relevant and potentially suitable for display to the user.

• Big Outer Try Block depends upon Hide Technical Detail from Users so that appropriate
messages are displayed to users.

The two highlighted patterns are described in the main body of the paper. The remaining
patterns, plus several proto-patterns, are briefly described at the end of the paper.

 More Patterns for the Generation, Handling and Management of Errors

 D6-4 Version 2.0

Unique Error Identifier

Problem
If an error on one tier in a distributed system causes knock-on errors on other tiers you get a
distorted view of the number of errors in the system and their origin.

Context
Multi-tier information systems, particularly those that use load balancing at different tiers to
improve availability and scalability. Within such an environment you have already decided
that as part of your error handling strategy you want to Log at Distribution Boundary.

Forces
• It is often possible to determine the sequence of knock-on errors across a distributed

system just by correlating raw error information and timestamps but this takes a lot of
skill in system forensics and usually a lot of time.

• The ability to route calls from a host on one tier to one of a set of load-balanced
servers in another tier improves the availability and scalability characteristics but
makes it very difficult to trace the path of a particular cross-tier call through the
system.

• You can correlate error messages based on their timestamp but this relies on all server
times being synchronized and does not help when two errors occur on servers in the
same tier within a small time window (basically the time to make a distributed call
between tiers).

• Similar timestamps help to associate errors on different tiers but if many errors occur
in a short period it becomes far harder to definitively associate an original error with
its knock-on errors.

Solution
Generate a Unique Identifier for each error that occurs and propagate this back to the caller.
Always include the Unique Identifier with any error log information so that multiple log
entries from the same cause can be associated and the underlying error can be correctly
identified.

Known Uses
The authors have observed this pattern in use within a number of successful enterprise
systems. We do not know of any publicly accessible implementations of it (because most
systems available for public inspection are single tier systems and so this pattern is not
relevant to them).

Implementation
The two key tenets that underlie this pattern are the uniqueness of the error identifier and the
consistency with which it is used in the logs. If either of these are implemented incorrectly
then the desired consequences will not result.

 More Patterns for the Generation, Handling and Management of Errors

 D6-5 Version 2.0

The unique error identifier must be unique across all the hosts in the system so that a
particular error event can be reliably identified. This rules out many pseudo-unique identifiers
such as those guaranteed to be unique within a particular virtual platform instance (.NET
Application Domain or Java Virtual Machine). The obvious solution is to use a platform-
generated Universally Unique ID (UUID) or Globally Unique ID (GUID). As these utilize the
unique network card number as part of the identifier then this guarantees uniqueness in space
(across servers). The only issue is then uniqueness across time (if two errors occur very close
in time) but the narrowness of the window (100ns) and the random seed used as part of the
UUID/GUID should prevent such problems arising in most scenarios.

It is important to maintain the integrity of the identifier as it is passed between hosts.
Problems may arise when passing a 128-bit value between systems and ensuring that the byte
order is correctly interpreted. If you suspect that any such problems may arise then you should
pass the identifier as a string to guarantee consistent representation.

The mechanism for passing the error identifier will depend on the transport between the
systems. In an RPC system, you may pass it as a return value or an [out] parameter whereas in
SOAP calls you could pass it back in the SOAP fault part of the response message.

In terms of ensuring that the unique identifier is included whenever an error is logged, the
responsibility lies with the developers of the software used. If you do not control all of the
software in your system you may need to provide appropriate error handling through a
Decorator [Gamma 1995] or as part of a Broker [Buschmann 1996]. If you control the error
framework you may be able to propagate the error identifier internally in a Context Object
[Fowler].

Consequences
The positive consequences of using this pattern are as follows.

• The system administrators can use a unified view of the errors in the system keyed on
the unique error identifier to determine which error is the underlying error and which
other errors are knock-ons from this one. If the errors in each tier are logged on
different hosts it may be necessary to retrieve and amalgamate multiple logs in a
System Overview [Dyson 2004] before such correlation can take place.

• Correlating errors based on the unique error id rather than the hosts on which they
occur gives a far clearer picture of error cause and effect across one or more tiers of
load-balanced servers.

• Skewed system times on different servers can cause problems with error tracing. If an
error occurs when host 1 calls host 2, host 2 will log the error and host 1 will log the
failed call. If the system time on host 1 is ahead of host 2 by a few milliseconds, it
could appear that the error on host 1 occurred before that on host 2 – hence obscuring
the sequence of cause and effect. However, if they both have the same unique error
identifier, the two errors are inextricably linked and so the time skew could be
identified and allowed for in the forensic examination.

• If lots of errors are generated on the same set of hosts at around the same time it
becomes possible to determine if a consistent pattern or patterns of error cascade is
occurring.

 More Patterns for the Generation, Handling and Management of Errors

 D6-6 Version 2.0

The negative consequences of using this pattern are as follows.
• The derivation of a unique error identifier may be relatively complex in some

environments and this could be a barrier to the pattern’s adoption in some situations.
• The implementation of this pattern implies logging each error a number of times, once

in each tier. This additional logging activity means that overall, logs will grow more
quickly than in systems that do not implement this approach. This means that the
runtime and administration overhead of this additional logging will need to be
absorbed in the design of the system.

Related Patterns
• Log at Distribution Boundary needs errors to have a unique error id in order to

correlate the distributed errors.

• You may or may not employ Centralized Error Logging [Renzel 97] to help assimilate
errors.

 More Patterns for the Generation, Handling and Management of Errors

 D6-7 Version 2.0

Hide Technical Error Detail from Users

Problem
The technical details of errors that occur are typically of no interest to the end-users of a
system. If exposed to such users, this error information may cause unnecessary concern and
support overhead.

Context
An information systems application, with a largely non-technical user community, probably
using the system via some sort of graphical interface.

Forces
• If a detailed error report, particularly for a technical error, is presented to an end user, they

are likely to find its content incomprehensible.

• If technical errors are presented to end users or the application simply stops or crashes
unexpectedly then this is likely to cause a loss of confidence in the application, possibly
leading to a reluctance to use it.

• Inconsistent user error reporting makes the system difficult to support as it confuses the
users and prevents them reporting problems accurately and consistently.

• Technical errors generally have a lot of information that is useful for Support Staff but it is
irrelevant to the end user.

• If the system under consideration offers a limited capability user interface (such as that
offered by a mobile device), the interface may not be capable of reporting detailed error
information in a comprehensible manner.

Solution
Implement a standard mechanism for reporting unexpected technical errors to end-users. The
mechanism can report all errors in a consistent way at a level of detail appropriate to the
different user constituencies who need to be informed about the error.

Known Uses
The authors are aware of a number of instances of this pattern in enterprise systems, although
none of them are available for public study. Some examples of using this pattern outside the
domain of enterprise systems include the following.

• A number of self service web-sites report a generic error message if an internal error

occurs, including a unique error identifier that can be used to report the situation to a
helpdesk.

• Some intelligent hardware devices respond to errors that occur by displaying a simple
error screen (in some cases including a unique error identifier to allow the error to be
uniquely identified by the hardware supplier), that instructs the owner to call a telephone
hotline in order to obtain assistance.

• The Microsoft Windows error dialog that is displayed when an application encounters an
internal error is an example of the use of this pattern.

 More Patterns for the Generation, Handling and Management of Errors

 D6-8 Version 2.0

Implementation
Within the system’s user interface implementation, provide a single, straightforward
mechanism for reporting technical errors to end-users. The mechanism is almost certainly
going to be a simple API call of the general form:

void notifyTechnicalError(Throwable t) ;

The mechanism created should perform two key tasks:

• Log the full technical details of the error that has occurred for possible use by technical

support staff.

• Display a friendly, user-centric message to inform the user that something terrible has
happened in general terms, making it clear that what has happened is not related to their
use of the system. The user message should include some form of unique identifier along
with a clear instruction to guide the user to report what has happened and the error
identifier (if necessary), via some form of helpdesk.

Ideally, the user reporting of the error should be automated in some way (for example
using desktop email automation) in order to make the process of reporting as simple as
possible and to avoid errors during the process. If the process is automated, this will avoid
the problem of users ignoring the errors because reporting them is too much trouble and
will ensure accurate reporting of each error.

From the information in the user’s error report, a helpdesk can escalate the problem to an
administrator who can access detailed error information elsewhere in the system, using the
identifier as a key.

Use this mechanism to handle all technical errors encountered by the system’s user interface.

Consequences
Positive consequences of implementing this pattern are as follows.
• Users of the system are never presented with technical error information that could confuse

or worry them.

• The system becomes easier to support because support staff can correlate fatal system
errors with logged information in order to allow them to understand and investigate the
problem.

• Error handling in the GUI implementation is simplified and standardized.

Negative consequences of implementing this pattern are as follows.
• Concealing all error information from the end-user means that a knowledgeable end-user is

powerless to apply their own knowledge to solve the problem. This could mean that a
number of avoidable calls are made to helpdesks, that could otherwise be resolved by the
users themselves.

• The implementation of this pattern may require the implementation of a reasonably
sophisticated error-handling framework and this may be perceived as a significant
overhead within the development process.

 More Patterns for the Generation, Handling and Management of Errors

 D6-9 Version 2.0

Related Patterns
• This pattern fits very naturally with the Big Outer Try Block to ensure that technical errors

are displayed and logged appropriately.

• Using the Log at Distribution Boundary pattern to govern where technical errors are
logged ensures that the received are suitable for reporting to the end user and include a
suitable unique identifier.

• This pattern can alternatively be combined directly with Unique Error Identifier to ensure
that errors can be clearly identified.

• An Error Dialog [Renzel 97] forms part of a strategy to hide errors from users.

 More Patterns for the Generation, Handling and Management of Errors

 D6-10 Version 2.0

Existing Pattern Reference

Split Domain and Technical Errors

Problem
Applications have to deal with a variety of errors during execution. Some of these errors, that
we term “domain errors”, are due to errors in the business logic or business processing (e.g.
wrong type of customer for insurance policy). Other errors, that we term “technical errors”,
are caused by problems in the underlying platform (e.g. could not connect to database) or by
unexpected faults (e.g. divide by zero). These different types of error occur in many parts of
the system for a variety of reasons. Most technical errors are, by their very nature, difficult to
predict, yet if a technical error could possibly occur during a method call then the calling code
must handle it in some way.

Handling technical errors in domain code makes this code more obscure and difficult to
maintain.

Solution
Split domain and technical error handling. Create separate exception/error hierarchies and
handle at different points and in different ways as appropriate.

Log at Distribution Boundary

Problem
The details of technical errors rarely make sense outside a particular, specialized, environment
where specialists with appropriate knowledge can address them. Propagating technical errors
between system tiers results in error details ending up in locations (such as end-user PCs)
where they are difficult to access and in a context far removed from that of the original error.

Solution
When technical errors occur, log them on the system where they occur passing a simpler
generic SystemError back to the caller for reporting at the end-user interface. The generic
error lets calling code know that there has been a problem so that they can handle it but
reduces the amount of system-specific information that needs to be passed back through the
distribution boundary.

Big Outer Try Block

Problem
Unexpected errors can occur in any system, no matter how well it is tested. Such truly
exceptional conditions are rarely anticipated in the design of the system and so are unlikely to
be handled by the system’s error handling strategy. This means that these errors will
propagate right to the edge of the system and will appear to “crash” the application if not
handled at that point. This may lead to some or all of the information associated with such
unexpected errors being lost, leading to difficulties with the rectification of underlying
problem in the system.

 More Patterns for the Generation, Handling and Management of Errors

 D6-11 Version 2.0

Solution
Implement a Big Outer Try Block at the “edge” of the system to catch and handle errors that
cannot be handled by other tiers of the system. The error handling in the block can report
errors in a consistent way at a level of detail appropriate to the user constituency.

Log Unexpected Errors

Problem
Much domain code includes handling of exceptional conditions and is designed to recognize
and handle each condition according to a business process definition (typically the offending
transaction being rejected or a new domain entity being created). If such routine error
conditions are logged, this makes real errors requiring operator intervention difficult to spot.

Solution

Implement separate error handling mechanisms for expected and unexpected errors. Error
conditions that are expected to arise in the course of normal domain processing should not be
logged but handled in the code or by the user. Hence, any logged error should be viewed as
requiring investigation.

Make Exceptions Exceptional

Problem
A number of languages include exception handling facilities and these are powerful additions
to the error handling toolkit available to programmers. However, if exceptions are used to
indicate expected error conditions occurring, then calling code becomes much more difficult
to understand.

Solution
Indicate expected domain errors by means of return codes. Only use exceptions to indicate
runtime problems such as underlying platform errors or configuration/data errors.

 More Patterns for the Generation, Handling and Management of Errors

 D6-12 Version 2.0

Proto-Patterns

Ignore Irrelevant Errors

Problem
Sometimes technical errors or exceptions do not denote a real problem and so reporting them
can just be confusing or irritating for support staff.

Solution
Assess what action can be taken in response to an error and only log it if there is a relevant
course of action. Example is ThreadAbortException which is raised under ASP.NET
whenever you transfer to another page using Server.Transfer(). This is not an error condition
– just a side-effect – and so is of no consequence to support staff. Also, you will get lots of
these in any busy web-based system.

Single Type for Technical Errors

Problem
There are a myriad different technical errors that may occur during a call to an underlying
component.

Solution
When you create your exception/error hierarchy for your application, define a single error
type to indicate a technical error, e.g. SystemError. The definition and use of a single
technical error type simplifies interfaces and prevents calling code needing to understand all
of the things that can possibly go wrong in the underlying infrastructure. This is especially
useful in environments that use checked exceptions (e.g. Java).

 More Patterns for the Generation, Handling and Management of Errors

 D6-13 Version 2.0

References
Buschmann 96 Pattern-Oriented Software Architecture, John Wiley and Sons, 1996
Cunningham CHECKS: A Pattern Language of Information Integrity

http://c2.com/ppr/checks.html
Dyson 2004 Architecting Enterprise Solutions: Patterns for High-Capability

Internet-based Systems, Paul Dyson and Andy Longshaw, John
Wiley and Sons, 2004

Gamma 1995 Design Patterns, Addison Wesley, 1995.
Haase Java Idioms – Exception Handling, linked from

http://hillside.net/patterns/EuroPLoP2002/papers.html
Harrison Patterns for Logging Diagnostic Messages, Neil B. Harrison
Longshaw 2004 Patterns for the Generation, Handling and Management of Errors,

Andy Longshaw and Eoin Woods, EuroPLOP 2004.
Renzel 97 Error Handling for Business Information Systems, Klaus Renzel,

linked from http://hillside.net/patterns/onlinepatterncatalog.htm

Acknowledgements
We’d like to thank our EuroPLoP 2005 shepherd, Ofra Homsky for her thorough and valuable
feedback during this paper’s review process and our original EuroPLOP 2004 shepherd Bob
Hanmer for providing very valuable advice on the original paper.

 More Patterns for the Generation, Handling and Management of Errors

 D6-14 Version 2.0

Appendix: Expected vs. Unexpected and Domain vs.
Technical Errors
This pattern language classifies errors as “domain” or “technical” and also as “expected” and
“unexpected”. To a large degree the relationship between these classifications is orthogonal.
You can have an expected domain error (no funds in the account), an unexpected domain
error (account not in database), an expected technical error (WAN link down – retry), and an
unexpected technical error (missing link library). Having said this, the most common
combinations are expected domain errors and unexpected technical errors.
A set of domain error conditions should be defined as part of the logical application model.
These form your expected domain errors. Unexpected domain errors should generally only
occur due to incorrect processing or mis-configuration of the application.
The sheer number of potential technical errors means that there will be a sizeable number that
are unexpected. However, some technical errors will be identified as potentially recoverable
as the system is developed and so specific error handling code may be introduced for them. If
there is no recovery strategy for a particular error it may as well join the ranks of unexpected
errors to avoid confusion in the support department (“why do they catch this and then re-
throw it…”).
Table 1 illustrates the relationship between these two dimensions of error classification and
the recommended strategy for handling each combination of the two dimensions, based on the
strategies contained in this collection of patterns.

 Expected Unexpected
Domain • Handle in the application

code
• Display details to the user
• Don’t log the error

• Throw an exception
• Display details to the user
• Log the error

Technical • Handle in the application
code

• Don’t display details to the
user

• Don’t log the error

• Throw an exception
• Don’t display details to the

user
• Log the error

Table 1- Error Handling Strategies

